PHYSICS

Senior Secondary stage of school education is a stage of transition from general education to discipline-based focus on curriculum. The present updated syllabus keeps in view the rigour and depth of disciplinary approach as well as the comprehension level of learners. Due care has also been taken that the syllabus is comparable to the international standards. Salient features of the syllabus include:

- Emphasis on basic conceptual understanding of the content.
- Emphasis on use of SI units, symbols, nomenclature of physical quantities and formulations as per international standards.
- Providing logical sequencing of units of the subject matter and proper placement of concepts with their linkage for better learning.
- Reducing the curriculum load by eliminating overlapping of concepts/content within the discipline and other disciplines.
- Promotion of process-skills, problem-solving abilities and applications of Physics concepts.

Besides, the syllabus also attempts to

- strengthen the concepts developed at the secondary stage to provide firm foundation for further learning in the subject.
- expose the learners to different processes used in Physics-related industrial and technological applications.
- develop process-skills and experimental, observational, manipulative, decision making and investigatory skills in the learners.
- promote problem solving abilities and creative thinking in learners.
- develop conceptual competence in the learners and make them realize and appreciate the interface of Physics with other disciplines.

PHYSICS (CODE 042)

COURSE STRUCTURE

Class XI (Theory) (2013-14)

<table>
<thead>
<tr>
<th>One Paper</th>
<th>Time: 3 hrs.</th>
<th>Max Marks: 70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit I Physical World and Measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit II Kinematics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit III Laws of Motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit IV Work, Energy and Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit V Motion of System of Particles and Rigid Body</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit VI Gravitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit VII Properties of Bulk Matter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit VIII Thermodynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit IX Behaviour of Perfect Gases and Kinetic Theory of gases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit X Oscillations and Waves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>160</td>
<td>70</td>
</tr>
</tbody>
</table>
Unit I: **Physical World and Measurement**
10 Periods

Physics - scope and excitement; nature of physical laws; Physics, technology and society.

Need for measurement: Units of measurement; systems of units; SI units, fundamental and derived units. Length, mass and time measurements; accuracy and precision of measuring instruments; errors in measurement; significant figures.

Dimensions of physical quantities, dimensional analysis and its applications.

Unit II: **Kinematics**
24 Periods

Frame of reference, Motion in a straight line: Position-time graph, speed and velocity.

Relations for uniformly accelerated motion (graphical treatment).

Scalar and vector quantities; Position and displacement vectors, general vectors and their notations; equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors. Relative velocity. Unit vector; Resolution of a vector in a plane - rectangular components. Scalar and Vector product of vectors.

Motion in a plane. Cases of uniform velocity and uniform acceleration-projectile motion. Uniform circular motion.

Unit III: **Laws of Motion**
14 Periods

Intuitive concept of force. Inertia, Newton's first law of motion; momentum and Newton's second law of motion; impulse; Newton's third law of motion.

Law of conservation of linear momentum and its applications.

Equilibrium of concurrent forces. Static and kinetic friction, laws of friction, rolling friction, lubrication.

Dynamics of uniform circular motion: Centripetal force, examples of circular motion (vehicle on a level circular road, vehicle on banked road).

Unit IV: **Work, Energy and Power**
12 Periods

Work done by a constant force and a variable force; kinetic energy, work-energy theorem, power.

Notion of potential energy, potential energy of a spring, conservative forces: conservation of mechanical energy (kinetic and potential energies); non-conservative forces: motion in a vertical circle; elastic and inelastic collisions in one and two dimensions.

Unit V: **Motion of System of Particles and Rigid Body**
18 Periods

Centre of mass of a two-particle system, momentum conservation and centre of mass motion.

Centre of mass of a rigid body; centre of mass of a uniform rod.

Moment of a force, torque, angular momentum, laws of conservation of angular momentum and its applications.

Equilibrium of rigid bodies, rigid body rotation and equations of rotational motion, comparison of linear and rotational motions.
Moment of inertia, radius of gyration. Values of moments of inertia, for simple geometrical objects (no derivation). Statement of parallel and perpendicular axes theorems and their applications.

Unit VI: Gravitation

12 Periods

Kepler's laws of planetary motion. The universal law of gravitation.

Acceleration due to gravity and its variation with altitude and depth.

Unit VII: Properties of Bulk Matter

24 Periods

Elastic behaviour, Stress-strain relationship, Hooke's law, Young's modulus, bulk modulus, shear modulus of rigidity, Poisson's ratio; elastic energy.

Pressure due to a fluid column; Pascal's law and its applications (hydraulic lift and hydraulic brakes).

Effect of gravity on fluid pressure.

Viscosity, Stokes' law, terminal velocity, streamline and turbulent flow, critical velocity. Bernoulli's theorem and its applications.

Surface energy and surface tension, angle of contact, excess of pressure across a curved surface, application of surface tension ideas to drops, bubbles and capillary rise.

Heat, temperature, thermal expansion; thermal expansion of solids, liquids and gases, anomalous expansion of water; specific heat capacity; C_p, C_v; calorimetry; change of state - latent heat capacity.

Heat transfer-conduction, convection and radiation, thermal conductivity, Qualitative ideas of Blackbody radiation, Wein's displacement Law, Stefan's law, Green house effect.

Unit VIII: Thermodynamics

12 Periods

Thermal equilibrium and definition of temperature (zeroth law of thermodynamics). Heat, work and internal energy. First law of thermodynamics. Isothermal and adiabatic processes.

Unit IX: Behaviour of Perfect Gases and Kinetic Theory of Gases

08 Periods

Equation of state of a perfect gas, work done in compressing a gas.

Kinetic theory of gases - assumptions, concept of pressure. Kinetic interpretation of temperature; rms speed of gas molecules; degrees of freedom, law of equi-partition of energy (statement only) and application to specific heat capacities of gases; concept of mean free path, Avogadro's number.

Unit X: Oscillations and Waves

26 Periods

Periodic motion - time period, frequency, displacement as a function of time. Periodic functions.

Simple harmonic motion (S.H.M) and its equation; phase; oscillations of a spring-restoring force and force constant; energy in S.H.M. Kinetic and potential energies; simple pendulum derivation of expression for its time period.

Free, forced and damped oscillations (qualitative ideas only), resonance.

PRACTICALS
The record, to be submitted by the students, at the time of their annual examination, has to include:

- Record of at least 15 Experiments [with a minimum of 8 from section A and 7 from section B], to be performed by the students.
- Record of at least 5 Activities [with a minimum of 2 each from section A and section B], to be performed by the students.
- Report of the project to be carried out by the students.

EVALUATION SCHEME

<table>
<thead>
<tr>
<th>Activity</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two experiments one from each section</td>
<td>8 + 8</td>
</tr>
<tr>
<td>Practical record (experiment and activities)</td>
<td>6</td>
</tr>
<tr>
<td>Investigatory Project</td>
<td>3</td>
</tr>
<tr>
<td>Viva on experiments, activities and project</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
</tr>
</tbody>
</table>

SECTION A

(Any 8 experiments out of the following to be performed by the Students)

1. To measure diameter of a small spherical/cylindrical body and to measure internal diameter and depth of a given beaker/calorimeter using Vernier Callipers and hence find its volume.
2. To measure diameter of a given wire and thickness of a given sheet using screw gauge.
3. To determine volume of an irregular lamina using screw gauge.
4. To determine radius of curvature of a given spherical surface by a spherometer.
5. To determine the mass of two different objects using a beam balance.
6. To find the weight of a given body using parallelogram law of vectors.
7. Using a simple pendulum, plot L-T and L-T^2 graphs. Hence find the effective length of second's pendulum using appropriate graph.
8. To study variation of time period of a simple pendulum by changing its length and taking bobs of different masses independently and interpret the result.
9. To study the relationship between force of limiting friction and normal reaction and to find the coefficient of friction between a block and a horizontal surface.
10. To find the downward force, along an inclined plane, acting on a roller due to Gravitational pull of the earth and study its relationship with the angle of inclination (θ) by plotting graph between force and sin θ.

Activities

1. To make a paper scale of given least count, e.g., 0.2cm, 0.5 cm.
2. To determine mass of a given body using a metre scale by principle of moments.
3. To plot a graph for a given set of data, with proper choice of scales and error bars.
4. To measure the force of limiting friction for rolling of a roller on a horizontal plane.
5. To study the variation in range of a Projectile with angle of projection.
6. To study the conservation of energy of a ball rolling down on an inclined plane (using a double inclined plane).
7. To study dissipation of energy of a simple pendulum by plotting a graph between square of amplitude and time.

SECTION–B

Experiments
(Any 7 experiments out of the following to be performed by the students)

1. To determine Young’s modulus of elasticity of the material of a given wire.
2. To find the force constant of a helical spring by plotting a graph between load and extension.
3. To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between P and V, and between P and 1/v.
4. To determine the surface tension of water by capillary rise method.
5. To determine the coefficient of viscosity of a given viscous liquid by measuring terminal velocity of a given spherical body.
6. To study the relationship between the temperature of a hot body and time by plotting a cooling curve.
7. To determine specific heat capacity of a given (i) solid, (ii) liquid, by method of mixtures.
8. To study the relation between frequency and length of a given wire under constant tension using sonometer.

OR

To study the relation between the length of a given wire and tension for constant frequency using sonometer.

9. To find the speed of sound in air at room temperature using a resonance tube by two resonance positions.

Activities

1. To observe change of state and plot a cooling curve for molten wax.
2. To observe and explain the effect of heating on a bi-metallic strip.
3. To note the change in level of liquid in a container on heating and interpret the observations.
4. To study the effect of detergent on surface tension of water by observing capillary rise.
5. To study the factors affecting the rate of loss of heat of a liquid.
6. To study the effect of load on depression of a suitably clamped metre scale loaded at(i) its end (ii) in the middle.
7. To observe the decrease in pressure with increase in velocity of a fluid.

Prescribed Books:

1. Physics Part-I, Textbook for Class XI, Published by NCERT
2. Physics Part-II, Textbook for Class XI, Published by NCERT
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Typology of Questions</th>
<th>Very Short Answer (VSA) (1 mark)</th>
<th>Short Answer-I (SA-I) (2 marks)</th>
<th>Short Answer -II (SA-II) (3 marks)</th>
<th>Value based question (L.A.) (4 marks)</th>
<th>Long Answer (L.A.) (5 marks)</th>
<th>Total Marks</th>
<th>% Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remembering- (Knowledge based) Simple recall questions, to know specific facts, terms, concepts, principles, or theories, Identify, define, or recite, information</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>10%</td>
</tr>
<tr>
<td>2</td>
<td>Understanding- (Comprehension) to be familiar with meaning and to understand conceptually, interpret, compare, contrast, explain, paraphrase information</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>30%</td>
</tr>
<tr>
<td>3</td>
<td>Application (Use abstract information in concrete situation, to apply knowledge to new situations, Use given content to interpret a situation, provide an example, or solve a problem)</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>30%</td>
</tr>
<tr>
<td>4</td>
<td>High Order Thinking Skills (Analysis & Synthesis) Classify, compare, contrast, or differentiate between different pieces of information, Organize and/or integrate unique pieces of information from a variety of sources</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>10</td>
<td>14%</td>
</tr>
<tr>
<td>5</td>
<td>Evaluation and Multi-Disciplinary- (Appraise, judge, and/or justify the value or worth of a decision or outcome, or to predict outcomes based on values)</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>11</td>
<td>16%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>5x1 = 5</td>
<td>5x2 = 10</td>
<td>12x3 = 36</td>
<td>4</td>
<td>5x5 = 15</td>
<td>70(26)</td>
<td>100%</td>
</tr>
</tbody>
</table>
QUESTION WISE BREAK UP

<table>
<thead>
<tr>
<th>Type of Question(s)</th>
<th>Mark(s) per Question</th>
<th>Total No. of Questions</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSA</td>
<td>1</td>
<td>5</td>
<td>05</td>
</tr>
<tr>
<td>SA-I</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>SA-II</td>
<td>3</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>VBQ</td>
<td>4</td>
<td>1</td>
<td>04</td>
</tr>
<tr>
<td>LA</td>
<td>5</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>26</td>
<td>70</td>
</tr>
</tbody>
</table>

1. **Internal Choice:** *There is no overall choice in the paper. However, there is an internal choice in one question of 2 marks weightage, one question of 3 marks weightage and all the three questions of 5 marks weightage.*

2. **The above template is only a sample. Suitable internal variations may be made for generating similar templates keeping the overall weightage to different form of questions and typology of questions same.*